The Impact of Preprocessing on Support Vector Regression and Neural Networks in Time Series Prediction

نویسندگان

  • Sven F. Crone
  • Jose Guajardo
  • Richard Weber
چکیده

Support Vector Regression (SVR) and Neural Networks (NN) have been successfully applied to forecasting and time series prediction. While conventional statistical methods require specific data preprocessing prior to the forecasting step both, SVR as well as NN need less efforts for the respective tasks due to their theoretical properties. On the other hand, it is known that preprocessing affects performance of classifiers built using these methods. In this paper we analyze how preprocessing affects the forecasting performance using SVR and NN and provide detailed insights applying several preprocessing strategies to different artificial time series. There is evidence to prefer linear scaling into the interval [-0.5,0.5] among the analyzed strategies. Future work is proposed in order to validate our findings and extend the experiments to alternative preprocessing strategies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Application of Artificial Neural Networks in a Two-step Classification for Acute Lymphocytic Leukemia Diagnosis by Blood Lamella Images

Introduction: This study aimed to present a system based on intelligent models that can enhance the accuracy of diagnostic systems for acute leukemia. The three parts including preprocessing, feature extraction, and classification network are considered as associated series of actions. Therefore, any dysfunction or poor accuracy in each part might lead in general dysfunction of...

متن کامل

Prediction of true critical temperature and pressure of binary hydrocarbon mixtures: A Comparison between the artificial neural networks and the support vector machine

Two main objectives have been considered in this paper: providing a good model to predict the critical temperature and pressure of binary hydrocarbon mixtures, and comparing the efficiency of the artificial neural network algorithms and the support vector regression as two commonly used soft computing methods. In order to have a fair comparison and to achieve the highest efficiency, a comprehen...

متن کامل

Support vector regression for prediction of gas reservoirs permeability

Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006